Prime numbers and implication free reducts of MV$_n$-chains

Marcelo E. Coniglio1, Francesc Esteva2, Tommaso Flaminio2, and Lluïs Godo2

1 Dept. of Philosophy - IFCH and CLE
University of Campinas, Campinas, Brazil
coniglio@cle.unicamp.br

2 IIIA - CSIC, Bellaterra, Barcelona, Spain
{esteva,tommaso,godo}@iiia.csic.es

Abstract

Let L$_{n+1}$ be the MV-chain on the $n + 1$ elements set $L_{n+1} = \{0, 1/n, 2/n, \ldots, (n - 1)/n, 1\}$ in the algebraic language \{→, ¬\} [3]. As usual, further operations on L$_{n+1}$ are definable by the following stipulations: $1 = x \rightarrow x$, $0 = \neg 1$, $x \oplus y = \neg x \rightarrow y$, $x \odot y = \neg (\neg x \oplus \neg y)$, $x \land y = x \odot (x \rightarrow y)$, $x \lor y = \neg (\neg x \land \neg y)$. Moreover, we will pay special attention to the also definable unary operator $^*x = x \odot x$.

In fact, the aim of this paper is to continue the study initiated in [4] of the \{∗, ∨\}-reducts of the MV-chains L$_{n+1}$, denoted L$_n^\ast$. In fact L$_n^\ast$ is the algebra on L$_{n+1}$ obtained by replacing the implication operator → by the unary operation ∗ which represents the square operator $^*x = x \odot x$ and which has been recently used in [5] to provide, among other things, an alternative axiomatization for the four-valued matrix logic $J_4 = \langle L_4, \{1/3, 2/3, 1\}\rangle$. In this contribution we make a step further in studying the expressive power of the ∗ operation, in particular our main result provides a full characterization of those prime numbers n for which the structures L$_{n+1}$ and L$_n^\ast$ are term-equivalent. In other words, we characterize for which n the Lukasiewicz implication → is definable in L$_n^\ast$, or equivalently, for which n L$_n^\ast$ is in fact an MV-algebra. We also recall that, in any case, the matrix logics (L$_n^\ast, F$), where F is an order filter, are algebraizable.

Term-equivalence between L$_{n+1}$ and L$_n^\ast$

Let X be a subset of L$_{n+1}$. We denote by $\langle X\rangle^\ast$ the subalgebra of L$_n^\ast$ generated by X (in the reduced language \{∗, ∨\}). For $n \geq 1$ define recursively (∗)nx as follows: (∗)$^1x = ^*x$, and (∗)$^{i+1}x = ((^*)^ix)$, for $i \geq 1$.

A nice feature of the L$_n^\ast$ algebras is that we can always define terms characterising the principal order filters $F_a = \{b \in L_{n+1} \mid a \leq b\}$, for every $a \in L_{n+1}$. A proof of the following result can be found in [4].

Proposition 1. For each $a \in L_{n+1}$, the unary operation Δ_a defined as

$$\Delta_a(x) = \begin{cases} 1 & \text{if } x \in F_a \\ 0 & \text{otherwise.} \end{cases}$$

is definable in L$_n^\ast$. Therefore, for every $a \in L_{n+1}$, the operation χ_a, i.e., the characteristic function of a (i.e. $\chi_a(x) = 1$ if $x = a$ and $\chi_a(x) = 0$ otherwise) is definable as well.

It is now almost immediate to check that the following implication-like operation is definable in every L$_n^\ast$: $x \Rightarrow y = 1$ if $x \leq y$ and 0 otherwise. Indeed, \Rightarrow can be defined as

$$x \Rightarrow y = \bigvee_{0 \leq i \leq j \leq n} (\chi_i/n(x) \land \chi_j/n(y)).$$
Actually, one can also define Gödel implication on \(L_{n+1}^* \) by putting \(x \Rightarrow_G y = (x \Rightarrow y) \vee y \).

It readily follows from Proposition 1 that all the \(L_{n+1}^* \) algebras are simple as, if \(a > b \in L_{n+1} \) would be congruent, then \(\Delta_n(a) = 1 \) and \(\Delta_n(b) = 0 \) should be so. Recall that an algebra is called \textit{strictly simple} if it is simple and does not contain proper subalgebras. It is clear that if \(L_{n+1}^* \) and \(L_{n+1}^* \) are strictly simple, then \(\{0, 1\} \) is their only proper subalgebra.

\textbf{Remark 2.} It is well-known that \(L_{n+1}^* \) is strictly simple iff \(n \) is prime. Note that, for every \(n \), if \(B = (B, \neg, \rightarrow) \) is an MV-subalgebra of \(L_{n+1}^* \), then \(B^* = (B, \vee, \neg, *) \) is a subalgebra of \(L_{n+1}^* \) as well. Thus, if \(L_{n+1}^* \) is not strictly simple, then \(L_{n+1}^* \) is not strictly simple as well. Therefore, if \(n \) is not prime, \(L_{n+1}^* \) is not strictly simple. However, in contrast with the case of \(L_{n+1}^* \), \(n \) being prime is not a sufficient condition for \(L_{n+1}^* \) being strictly simple.

We now introduce the following procedure \(P \): given \(n \) and an element \(a \in L_{n+1}^* \setminus \{0, 1\} \), it iteratively computes a sequence \([a_1, \ldots, a_k, \ldots]\) where \(a_1 = a \) and for every \(k \geq 1 \),

\[a_{k+1} = \begin{cases} \ast(a_k), & \text{if } a_k > 1/2 \\ \neg(a_k), & \text{otherwise (i.e., if } a_k < 1/2) \end{cases} \]

until it finds an element \(a_i \) such that \(a_i = a_j \) for some \(j < i \), and then it stops. Since everything is finite, the procedure always stops and produces a finite sequence. Then we write \(P(n, a) = \{a_1, a_2, \ldots, a_m\} \), where \(a_1 = a \) and \(a_m \) is such that \(P \) stops at \(a_m+1 \). Therefore,

\textbf{Lemma 3.} For each odd number \(n \), let \(a_1 = (n - 1)/n \). Then the procedure \(P \) stops after reaching \(1/n \), that is, if \(P(n, a_1) = \{a_1, a_2, \ldots, a_m\} \) then \(a_m = 1/n \).

Furthermore, for any \(a \in L_{n+1}^* \setminus \{0, 1\} \), the set \(A_1 \) of elements reached by \(P(n, a) \), i.e. \(A_1 = \{b \in L_{n+1}^* \mid b \text{ appears in } P(n, a)\} \), together with the set \(A_2 \) of their negations, 0 and 1, define the domain of a subalgebra of \(L_{n+1}^* \).

\textbf{Lemma 4.} \(L_{n+1}^* \) is strictly simple iff \(\langle(n - 1)/n\rangle^* = L_{n+1}^* \).

\textit{Proof.} (Sketch) The ‘if’ direction is trivial. As for the other direction, call \(a_1 = (n - 1)/n \) and assume that \(\langle a_1 \rangle^* = L_{n+1}^* \). Launch the procedure \(P(n, a_1) \) and let \(A \) be the subalgebra of \(L_{n+1}^* \) whose universe is \(A_1 \cup A_2 \cup \{0, 1\} \) defined as above. Clearly \(a_1 \in A \), hence \(\langle a_1 \rangle^* \subseteq A \). But \(A \subseteq \langle a_1 \rangle^* \), by construction. Therefore \(A = \langle a_1 \rangle^* = L_{n+1}^* \).

\textbf{Fact:} Under the current hypothesis (namely, \(\langle a_1 \rangle^* = L_{n+1}^* \)) if \(n \) is even, then \(n = 2 \) or \(n = 4 \). Thus, assume \(n \) is odd, and hence Lemma 3 shows that \(1/n \in A_1 \). Now, let \(c \in L_{n+1}^* \setminus \{0, 1\} \) such that \(c \neq a_1 \). If \(c \in A_1 \) then the process of generation of \(A \) from \(c \) will produce the same set \(A_1 \) and so \(A = L_{n+1}^* \), showing that \(\langle c \rangle^* = L_{n+1}^* \). Otherwise, if \(c \in A_2 \) then \(\neg c \in A_1 \) and, by the same argument as above, it follows that \(\langle c \rangle^* = L_{n+1}^* \). This shows that \(L_{n+1}^* \) is strictly simple.

\textbf{Lemma 5} ([4]). If \(L_{n+1}^* \) is term-equivalent to \(L_{n+1}^* \) then:

(i) \(L_{n+1}^* \) is strictly simple.

(ii) \(n \) is prime

\textbf{Theorem 6.} \(L_{n+1}^* \) is term-equivalent to \(L_{n+1}^* \) iff \(L_{n+1}^* \) is strictly simple.

\textit{Proof.} The ‘only if’ part is (i) of Lemma 5. For the ‘if’ part, since \(L_{n+1}^* \) is strictly simple then, for each \(a, b \in L_{n+1} \) where \(a \notin \{0, 1\} \) there is a definable term \(t_{a,b}(x) \) such that \(t_{a,b}(a) = b \). Otherwise, if for some \(a \notin \{0, 1\} \) and \(b \in L_{n+1} \) there is no such term then \(A = \langle a \rangle^* \) would be a
proper subalgebra of L^*_{n+1} (since $b \not\in A$) different from \{0, 1\}, a contradiction. By Proposition 1
the operations $\chi_a(x)$ are definable for each $a \in L_{n+1}$, then in L^*_{n+1} we can define Lukasiewicz
implication \rightarrow as follows:

$$
x \rightarrow y = (x \Rightarrow y) \lor \left(\bigvee_{n>i>j\geq 0} \chi_{i/n}(x) \land \chi_{j/n}(y) \land t_{i/n.a_{ij}}(x) \right) \lor \left(\bigvee_{n>j\geq 0} \chi_1(x) \land \chi_{j/n}(y) \land y \right)
$$

where $a_{ij} = 1 - i/n + j/n$.

We have seen that n being prime is a necessary condition for L_{n+1} and L^*_{n+1} being term-equivalent. But this is not a sufficient condition: in fact, there are prime numbers n for which L_{n+1} and L^*_{n+1} are not term-equivalent and this is the case, for instance, of $n = 17$.

Definition 7. Let Π be the set of odd primes n such that 2^m is not congruent with $\pm 1 \bmod n$ for all m such that $0 < m < (n-1)/2$.

Since, for every odd prime n, 2^m is congruent with $\pm 1 \bmod n$ for $m = (n-1)/2$ then n is in Π iff n is an odd prime such that $(n-1)/2$ is the least $0 < m$ such that 2^m is congruent with $\pm 1 \bmod n$.

The following is our main result and it characterizes the class of prime numbers for which the Lukasiewicz implication is definable in L^*_{n+1}.

Theorem 8. For every prime number $n > 5$, $n \in \Pi$ iff L_{n+1} and L^*_{n+1} are term-equivalent.

The proof of theorem above makes use of the procedure P defined above. Let $a_1 = (n-1)/n$ and let $P(n, a_1) = [a_1, \ldots, a_i]$. By the definition of the procedure P, the sequence $[a_1, \ldots, a_i]$ is the concatenation of a number r of subsequences $[a_{i_1}, \ldots, a_{i_{r_1}}], [a_{i_2}, \ldots, a_{i_{r_2}}], \ldots, [a_{i_r}, \ldots, a_{i_{r_r}}]$, with $a_{i_1} = a_l$ and $a_{i_r} = a_l$, where for each subsequence $1 \leq j \leq r$, only the last element a_{i_j} is below 1/2, while the rest of elements are above 1/2.

Now, by the very definition of \ast, it follows that the last elements $a_{i_{j_i}}$ of every subsequence are of the form

$$
a_{i_{j_i}} = \begin{cases}
k n - 2^m \bmod n, & \text{if } j \text{ is odd} \\
2^m - kn \bmod n, & \text{otherwise, i.e. if } j \text{ is even}
\end{cases}
$$

for some $m, k > 0$, where in particular m is the number of strictly positive elements of L_{n+1} which are obtained by the procedure before getting $a_{i_{j_i}}$.

Now, Lemma 3 shows that if n is odd then 1/n is reached by P, i.e. $a_l = a_{i_{r_l}} = 1/n$. Thus,

$$
\begin{cases}
k n - 2^m = 1, & \text{if } r \text{ is odd (i.e., } 2^m \equiv -1 \bmod n) \text{ if } r \text{ is odd} \\
2^m - kn = 1, & \text{otherwise (i.e., } 2^m \equiv 1 \bmod n) \text{ if } r \text{ is even}
\end{cases}
$$

where m is now the number of strictly positive elements in the list $P(n, a_1)$, i.e. that are reached by the procedure.

Therefore 2^m is congruent with $\pm 1 \bmod n$. If n is a prime such that L^*_{n+1} is strictly simple, the integer m must be exactly $(n - 1)/2$, for otherwise $\langle a_1 \rangle^*$ would be a proper subalgebra of L^*_{n+1} which is absurd. Moreover, for no $m' < m$ one has that $2^{m'}$ is congruent with $\pm 1 \bmod n$ because, in this case, the algorithm would stop producing a proper subalgebra of L^*_{n+1}. This result, together with Theorem 6, shows the right-to-left direction of Theorem 8.
In order to show the other direction assume, by Theorem 6, that $L_{i,n+1}^*$ is not strictly simple. Thus, by Lemma 4, $(a_1)^*_{i,n}$ is a proper subalgebra of $L_{i,n+1}^*$ and hence the algorithm above stops, in $1/n$, after reaching $m < (n-1)/2$ strictly positive elements of $L_{i,n+1}^*$. Thus, 2^m is congruent with ± 1 (depending on whether r is even or odd, where r is the number of subsequences in the list $P(n,a_1)$ as described above) mod n, showing that $n \not\in \Pi$.

Algebraizability of $\langle L_{i,n+1}^*, F_{i,n} \rangle$

Given the algebra L_{n+1}^*, it is possible to consider, for every $1 \leq i \leq n$, the matrix logic $L_{i,n+1}^* = \langle L_{i,n+1}^*, F_{i,n} \rangle$. In this section we recall from [4] that all the $L_{i,n+1}^*$ logics are algebraizable in the sense of Blok-Pigozzi [1], and that, for every i, j, the quasivarieties associated to $L_{i,n+1}^*$ and $L_{j,n+1}^*$ are the same.

Observe that the operation $x \approx y = 1$ if $x = y$ and $x \approx y = 0$ otherwise is definable in L_{n+1}^*. Indeed, it can be defined as $x \approx y = (x \Rightarrow y) \land (y \Rightarrow x)$. Also observe that $x \approx y = \Delta_1((x \Rightarrow_G y) \land (y \Rightarrow_G x))$ as well.

Lemma 9. For every n, the logic $L_{n+1}^* := L_{n,n+1}^* = \langle L_{n+1}^*, \{1\} \rangle$ is algebraizable.

Proof. It is immediate to see that the set of formulas $\Delta(p,q) = \{p \Rightarrow q\}$ and the set of pairs of formulas $E(p,q) = \{\langle p, \Delta_0(p) \rangle\}$ satisfy the requirements of algebraizability. \hfill \Box

Blok and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two propositional deductive systems S_1 and S_2 in the same language are equivalent if there are translations $\tau_i : S_i \rightarrow S_j$ for $i \neq j$ such that: $\Gamma \vdash_{S_i} \varphi \iff \Gamma \vdash_{S_j} \tau_i(\varphi)$, and $\varphi \dashv \vdash_{S_i} \tau_i(\varphi))$. From very general results in [2] it follows that two equivalent logic systems are indistinguishable from the algebraic point of view, namely: if one of the systems is algebraizable then the other will be also algebraizable w.r.t. the same quasivariety. This can be applied to $L_{i,n+1}^*$.

Lemma 10. For every n and every $1 \leq i \leq n - 1$, the logics $L_{i,n+1}^*$ and $L_{i,n+1}^*$ are equivalent.

Indeed, it is enough to consider the translation mappings $\tau_1 : L_{i,n+1}^* \rightarrow L_{i,n+1}^*$, $\tau_1(\varphi) = \Delta_1(\varphi)$, and $\tau_{i,2} : L_{i,n+1}^* \rightarrow L_{i,n+1}^*$, $\tau_{i,2}(\varphi) = \Delta_i(\varphi)$. Therefore, as a direct consequence of Lemma 9, Lemma 10 and the observations above, it follows the algebraizability of $L_{i,n+1}^*$.

Theorem 11. For every n and for every $1 \leq i \leq n$, the logic $L_{i,n+1}^*$ is algebraizable.

Therefore, for each logic $L_{i,n+1}^*$ there is a quasivariety $Q(i,n)$ which is its equivalent algebraic semantics. Moreover, by Lemma 10 and by Blok and Pigozzi’s results, $Q(i,n)$ and $Q(j,n)$ coincide, for every i, j. The question of axiomatizing $Q(i,n)$ is left for future work.

References

