Contents

Committees .. i
Preface ... iii
Program Overview ... v

Invited Speakers

Logics of information and belief, coalgebraically 3
Marta Bílková

Embedding lattice-ordered bi-monoids in involutive commutative residuated lattices ... 4
Nikolaos Galatos (joint work with Adam Přenosil)

Regular properties and the existence of proof systems 5
Rosalie Iemhoff

Relational semantics, ordered algebras, and quantifiers for deductive systems ... 6
Tommaso Moraschini (joint work with Ramon Jansana)

Contributed Papers

First order Gödel logics with propositional quantifiers 13
Matthias Baaz and Norbert Preining

Maximality of First-order logics based on finite MTL-chains 17
Guillermo Badia and Carles Noguera

Partial fuzzy modal logic with a crisp and total accessibility relation 20
Libor Behounek and Antonín Dvořák

MacNeille transferability of finite lattices 24
Guram Bezhanishvili, John Harding, Julia Ilin, and Frederik M. Lauridsen

Epistemic MV-Algebras .. 27
Manuela Busaniche, Penélope Cordero, and Ricardo Óscar Rodríguez

General neighborhood and Kripke semantics for modal many-valued logics 31
Petr Cintula, Paula Menchón, and Carles Noguera

Hereditarily structurally complete positive logics 35
Alex Citkin
Maximality in finite-valued Łukasiewicz logics defined by order filters 39
Marcelo Coniglio, Francesc Esteva, Joan Gispert, and Lluís Godo

On an implication-free reduct of MVn chains .. 43
Marcelo Coniglio, Tommaso Flaminio, Francesc Esteva, and Lluís Godo

A fuzzy-paraconsistent version of basic hybrid logic 47
Diana Costa and Manuel A. Martins

Functionality property in partial fuzzy logic ... 51
Martina Daňková

Omitting types theorem in mathematical fuzzy logic 55
Denisa Diaconescu and Petr Cintula

Skolemization and Herbrand theorems for lattice-valued Logics 58
Denisa Diaconescu, Petr Cintula, and George Metcalfe

Residuated structures with functional frames ... 60
Wesley Fussner and Alessandra Palmigiano

IULfp enjoys finite strong standard completeness 63
Sándor Jenei

Partially-ordered multi-type algebras, display calculi
and the category of weakening relations ... 67
Peter Jipsen, Fei Liang, M. Andrew Moshier, and Apostolos Tzimoulis

A many-sorted polyadic modal logic .. 70
Ioana Leustean and Natalia Moangă

Epimorphisms in varieties of square-increasing residuated structures 74
Tommaso Moraschini, James Raftery, and Jamie Wannenburg

Epimorphisms, definability and cardinalities ... 77
Tommaso Moraschini, James Raftery, and Jamie Wannenburg

Residuated lattices and the Nelson identity ... 81
Umberto Rivieccio, Thiago N. Silva, and Matthew Spinks

Modal logics for reasoning about weighted graphs 84
Igor Sedlar and Amanda Vidal Wandelmer

Deciding active structural completeness ... 87
Michał Stronkowski

Non axiomatizability of the finitary Łukasiewicz modal logic 89
Amanda Vidal

Implicational tonoid logics and their relational semantics 93
Eunsuk Yang and J. Michael Dunn
Maximality in finite-valued Lukasiewicz logics
defined by order filters

Marcelo Coniglio¹, Francesc Esteva², Joan Gispert³, and Lluís Godo⁴

¹ Centre for Logic Epistemology and the History of Science, University of Campinas, Brazil.
coniglio@cle.unicamp.br
² Artificial Intelligence Research Institute (IIIA), CSIC, Barcelona, Spain.
esteva@iiia.csic.es
³ Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain.
jgispert@ub.edu
⁴ Artificial Intelligence Research Institute (IIIA), CSIC, Barcelona, Spain.
godo@iiia.csic.es

1 Preliminaries and first results

In this talk we consider the logics \(L_n^i \), obtained from the \((n+1)\)-valued Lukasiewicz logics \(L_{n+1} \) by taking the order filter generated by \(i/n \) as the set of designated elements. The \((n+1)\)-valued Lukasiewicz logic can be semantically defined as the matrix logic

\[
L_{n+1} = \langle LV_{n+1}, \{1\} \rangle,
\]

where \(LV_{n+1} = (LV_{n+1}, \neg, \to) \) with \(LV_{n+1} = \{0, \frac{1}{n}, \ldots, \frac{n+1}{n}, 1\} \), and the operations are defined as follows: for every \(x, y \in LV_{n+1} \), \(\neg x = 1 - x \) and \(x \to y = \min\{1, 1 - x + y\} \).

Observe that \(L_2 \) is the usual presentation of classical propositional logic CPL as a matrix logic over the two-element Boolean algebra \(B_2 \) with domain \(\{0, 1\} \) and signature \(\{\neg, \to\} \). The logics \(L_n \) can also be presented as Hilbert calculi that are axiomatic extensions of the infinite-valued Lukasiewicz logic \(L_\infty \).

The following operations can be defined in every algebra \(LV_{n+1} \): \(x \ominus y = \neg (x \to \neg y) = \max\{0, x + y - 1\} \) and \(x \oplus y = \neg x \to y = \min\{1, x + y\} \). For every \(n > 1 \), \(x^n = x \ominus \cdots \ominus x \) (\(n \)-times) and \(nx = x \oplus \cdots \oplus x \) (\(n \)-times).

For \(1 \leq i \leq n \) let \(F_{i/n} = \{x \in LV_{n+1} : x \geq i/n\} = \{\frac{i}{n}, \ldots, \frac{n+1}{n}, 1\} \) be the order filter generated by \(i/n \), and let

\[
L_n^i = \langle LV_{n+1}, F_{i/n} \rangle
\]

be the corresponding matrix logic. From now on, the consequence relation of \(L_n^i \) is denoted by \(\models_{L_n^i} \). Observe that \(L_{n+1} = L_n^1 \) for every \(n \). In particular, \(CPL \) is \(L_2^1 \) (that is, \(L_2 \)). If \(1 \leq i, m \leq n \), we can also consider the following matrix logic: \(L_n^{i/m} = \langle LV_{m+1}, F_{i/m} \cap LV_{m+1} \rangle \).

The logic \(L_3^1 = \langle LV_3, \{1, 1/2\} \rangle \) was already known as the 3-valued paraconsistent logic \(J_3 \), introduced by da Costa and D’Ottaviano see [4] in order to obtain an example of a paraconsistent logic maximal w.r.t. CPL.

Definition 1. Let \(L_1 \) and \(L_2 \) be two standard propositional logics defined over the same signature \(\Theta \) such that \(L_1 \) is a proper sublogic of \(L_2 \). Then, \(L_1 \) is **maximal w.r.t.** \(L_2 \) if, for every formula \(\phi \) over \(\Theta \), if \(\vdash_{L_2} \phi \) but \(\not\vdash_{L_1} \phi \), then the logic \(L_1^+ \) obtained from \(L_1 \) by adding \(\phi \) as a theorem, coincides with \(L_2 \).

In order to study maximality among finite-valued Lukasiewicz logics defined by order filters we obtain the following sufficient condition:
Theorem 1. Let $L_1 = \langle A_1, F_1 \rangle$ and $L_2 = \langle A_2, F_2 \rangle$ be two distinct finite matrix logics over a same signature Θ such that A_2 is a subalgebra of A_1 and $F_2 = F_1 \cap A_2$. Assume the following:

1. $A_1 = \{0, 1, a_1, \ldots, a_k, a_{k+1}, \ldots, a_n\}$ and $A_2 = \{0, 1, a_1, \ldots, a_k\}$ are finite such that $0 \notin F_1$, $1 \in F_2$ and $\{0, 1\}$ is a subalgebra of A_2.

2. There are formulas $\top(p)$ and $\bot(p)$ in $\mathcal{L}(\Theta)$ depending at most on one variable p such that $e(\top(p)) = 1$ and $e(\bot(p)) = 0$, for every evaluation e for L_1.

3. For every $k + 1 \leq i \leq n$ and $1 \leq j \leq n$ (with $i \neq j$) there exists a formula $\alpha_i^j(p)$ in $\mathcal{L}(\Theta)$ depending at most on one variable p such that, for every evaluation e, $e(\alpha_i^j(p)) = a_j$ if $e(p) = a_i$.

Then, L_1 is maximal w.r.t. L_2.

We use this result to prove that

Theorem 2. Let $1 \leq i, m \leq n$. Then L_i^m is maximal w.r.t. L_i^{0m} if the following condition holds: there is some prime number p and $k \geq 1$ such that $n = p^k$, and $m = p^{k-1}$.

Corollary 1. Let $1 \leq i \leq p$. For every prime number p, L_i^p is maximal w.r.t. CPL.

Notice that the above corollary generalizes the well known result: L_{p+1} is maximal w.r.t. CPL for every prime number p.

Definition 2. Let L_1 and L_2 be two standard propositional logics defined over the same signature Θ such that L_1 is a proper sublogic of L_2. Then, L_1 is strongly maximal w.r.t. L_2 if, for every finitary rule $\varphi_1, \ldots, \varphi_n / \psi$ over Θ, if $\varphi_1, \ldots, \varphi_n \vdash_{L_2} \psi$ but $\varphi_1, \ldots, \varphi_n \not\vdash_{L_1} \psi$, then the logic L_1^i obtained from L_1 by adding $\varphi_1, \ldots, \varphi_n / \psi$ as structural rule, coincides with L_2.

Let i be a strictly positive integer, the i-explosion rule is the rule $(\text{exp}_i) \frac{i(\varphi \land \lnot \varphi)}{\bot}$.

Lemma 1. For every $1 \leq i \leq n$, the rule (exp_i) is not valid in L_i^i.

Corollary 2. Let $1 \leq i \leq p$. For every prime number p, L_i^p is not strongly maximal w.r.t. CPL.

2 Equivalent systems

Blok and Pigozzi introduce in [3] the notion of equivalent deductive systems in the following sense: Two propositional deductive systems S_1 and S_2 in the same language \mathcal{L} are equivalent if there are two translations τ_1, τ_2 (finite subsets of \mathcal{L}-propositional formulas in one variable) such that:

- $\Gamma \vdash_{S_1} \varphi$ iff $\tau_1(\Gamma) \vdash_{S_2} \tau_1(\varphi)$,
- $\Delta \vdash_{S_2} \psi$ iff $\tau_2(\Delta) \vdash_{S_1} \tau_2(\psi)$,
- $\varphi \vdash_{S_1} \tau_1(\varphi)$,
- $\psi \vdash_{S_2} \tau_1(\tau_2(\psi))$.

Theorem 3. For every $n \geq 2$ and every $1 \leq i \leq n$, L_i^n and L^{n+1} are equivalent deductive systems.
From the equivalence among L^i_n and L_{n+1}, we can obtain, by translating the axiomatization of the finite valued Lukasiewicz logic L_{n+1}, a calculus sound and complete with respect L^i_n that we denote by H^i_n.

Since L^i_n is algebraizable and the class MV of all MV-algebras is its equivalent quasivariety semantics, finitary extensions of L^i_n are in 1 to 1 correspondence with quasivarieties of MV-algebras. Actually, there is a dual isomorphism from the lattice of all finitary extensions of L^i_n and the lattice of all quasivarieties of MV. Moreover, if we restrict this correspondence to varieties of MV we get the dual isomorphism from the lattice of all varieties of MV and the lattice of all axiomatic extensions of L^i_n. Since $L_{n+1} = L^n_n$ is an axiomatic extension of L^i_n, L_{n+1} is an algebraizable logic with the class $MV_n = Q(LV_{n+1})$, the quasivariety generated by LV_{n+1}, as its equivalent variety semantics. It follows from the previous theorem that L^i_n, for every $1 \leq i \leq n$, is also algebraizable with the same class of MV_n-algebras as its equivalent variety semantics. Thus, the lattices of all finitary extensions of L^i_n are isomorphic, and in fact, dually isomorphic to the lattice of all subquasivarieties of MV_n, for all $0 < i < n$.

Therefore maximality conditions in the lattice of finitary (axiomatic) extensions correspond to minimality conditions in the lattice of subquasivarieties (subvarieties). Thus, given two finitary extensions L_1 and L_2 of a given logic L^i_n, where K_{L_1} and K_{L_2} are its associated MV-quasivarieties, L_1 is strongly maximal with respect L_2 if K_{L_1} is a minimal subquasivariety of MV_n among those MV_n-quasivarieties properly containing K_{L_2}. Moreover, if L_1 and L_2 are axiomatic extensions of L^i_n, then K_{L_1} and K_{L_2} are indeed MV_n-varieties. In that case, L_1 is maximal with respect L_2 if K_{L_1} is a minimal subvariety of MV_n among those MV_n-varieties properly containing K_{L_2}.

The lattice of all axiomatic extensions L^i_n is fully described also by Komori in [7], thus from the equivalence of Theorem 3, we can obtain the following maximality conditions for all axiomatic extensions of L^i_n.

Theorem 4. Let $0 < i, m \leq n$ be natural numbers such that $m \leq n$. If L is an axiomatic extension of L^i_n, then L is maximal with respect L^i_n if $L = L^i_n \cap L^i_m$ for some prime number p with $p | m$ and a natural $k \geq 0$ such that $p^k | m$ and $p^{k+1} \notin m$.

As a corollary we obtain that the sufficient condition of Theorem 2 is also necessary.

Corollary 3. Let $1 \leq i, m \leq n$. Then L^i_n is maximal w.r.t. L^i_m if and only if there is only if some prime number p and $k \geq 1$ such that $n = p^k$, and $m = p^{k+1}$.

To obtain results on strong maximality we need to study finitary extensions of L^i_n. The task of fully describing the lattice of all finitary extensions of L^i_n, isomorphic to the lattice of all quasivarieties of MV, turns to be an heroic task since the class of all MV-algebras is Q-universal [1]. For the finite valued case it is much simpler, since MV_n is a locally finite discriminator variety. Any locally finite quasivariety is generated by its critical algebras [5]. Critical MV-algebras were fully described in [6] and using this description we can obtain some results on strong maximality.

First we need to introduce the following matrix logics: For every $1 \leq i, m \leq n$,

$$L^i_n = (LV_{n+1} \times LV_2, F_{i/n}) \quad L^i_m = (LV_{m+1} \times LV_2, (F_{i/n} \cap LV_{m+1}) \times \{1\})$$

Theorem 5. Let $0 < i \leq n$ be natural numbers, let p be a prime number and let $r = \max\{j \in N : p^j | n\}$. Then we have: For every j such that $(i - 1)p < j \leq ip$, $L^i_n \cap L^{i,rp+1}_{p+1}$ is strongly maximal with respect to L^i_n. Moreover, every finitary extension of some L^i_n is strongly maximal with respect L^i_n if it is one of the preceding types.
Theorem 6. Let \(p \) be a prime number. Then, for every \(j \) such that \(0 < j \leq p \):

- \(\bar{L}_j \) is strongly maximal with respect to CPL and it is axiomatized by \(H_j^p \) plus the \(j \)-explosion rule \((exp_j)\) \(j(\varphi \land \neg \varphi)/\bot \).
- \(\bar{L}_j \) is strongly maximal w.r.t. \(\bar{L}_j^p \).

3 Ideal paraconsistent logics

Definition 3. Let \(L \) be a propositional logic defined over a signature \(\Theta \) (with consequence relation \(\vdash_L \)) containing at least a unary connective \(\neg \) and a binary connective \(\rightarrow \) such that:

(i) \(L \) is paraconsistent w.r.t. \(\neg \), i.e. there are formulas \(\varphi, \psi \in L(\Theta) \) such that \(\varphi, \neg \varphi \not\vdash_L \psi \); and \(\rightarrow \) is a deductive implication, i.e. \(\Gamma \cup \{ \varphi \} \vdash_L \psi \iff \Gamma \vdash_L \varphi \rightarrow \psi \).

(ii) There is a presentation of CPL as a matrix logic \(L^i \equiv (A, \{1\}) \) over the signature \(\Theta \) such that the domain of \(A \) is \(\{0, 1\} \), and \(\neg \) and \(\rightarrow \) are interpreted as the usual 2-valued negation and implication of CPL, respectively, such that \(L \) is a sublogic of CPL.

Then, \(L \) is said to be an ideal paraconsistent logic if it is maximal w.r.t. CPL, and every proper extension of \(L \) over \(\Theta \) is not \(\neg \)-paraconsistent.

Lemma 2. Let \(0 < i \leq n \). \(L_n^i \) is paraconsistent w.r.t. \(\neg \) iff \(\frac{i}{n} \leq \frac{1}{2} \).

Since for every \(0 < i \leq n \), there is a term definable implication \(\Rightarrow_n^i \) which is deductive implication next result follows from Theorem 6.

Theorem 7. Let \(p \) be a prime number, and let \(1 < i < p \) such that \(i/p \leq 1/2 \). Then, \(L_i^p \) is a \((p+1)\)-valued ideal paraconsistent logic.\(^1\)

References

\(^1\)Strictly speaking, in this claim we implicitly assume that the signature of \(L_i^p \) has been changed by adding the definable implication \(\Rightarrow_n^i \) as a primitive connective.