Contents

Committees i
Preface iii
Program Overview v
Invited Speakers 1
Logics of information and belief, coalgebraically 3
Marta Bílková
Embedding lattice-ordered bi-monoids in involutive commutative
residuated lattices ... 4
Nikolaos Galatos (joint work with Adam Přenosil)
Regular properties and the existence of proof systems 5
Rosalie Iemhoff
Relational semantics, ordered algebras, and quantifiers for deductive systems . 6
Tommaso Moraschini (joint work with Ramon Jansana)
Contributed Papers 11
First order Gödel logics with propositional quantifiers 13
Matthias Baaz and Norbert Preining
Maximality of First-order logics based on finite MTL-chains 17
Guillermo Badia and Carles Noguera
Partial fuzzy modal logic with a crisp and total accessibility relation 20
Libor Behounek and Antonín Dvořák
MacNeille transferability of finite lattices .. 24
Guram Bezhanishvili, John Harding, Julia Ilin, and Frederik M. Lauridsen
Epistemic MV-Algebras .. 27
Manuela Busaniche, Penélope Cordero, and Ricardo Óscar Rodríguez
General neighborhood and Kripke semantics for modal many-valued logics . 31
Petr Cintula, Paula Menchón, and Carles Noguera
Hereditarily structurally complete positive logics 35
Alex Citkin
Maximality in finite-valued Łukasiewicz logics defined by order filters 39
Marcelo Coniglio, Francesc Esteva, Joan Gispert, and Lluís Godo

On an implication-free reduct of MVn chains ... 43
Marcelo Coniglio, Tommaso Flaminio, Francesc Esteva, and Lluís Godo

A fuzzy-paraconsistent version of basic hybrid logic 47
Diana Costa and Manuel A. Martins

Functionality property in partial fuzzy logic ... 51
Martina Daňková

Omitting types theorem in mathematical fuzzy logic 55
Denisa Diaconescu and Petr Cintula

Skolemization and Herbrand theorems for lattice-valued Logics 58
Denisa Diaconescu, Petr Cintula, and George Metcalfe

Residuated structures with functional frames ... 60
Wesley Fussner and Alessandra Palmigiano

IULfp enjoys finite strong standard completeness 63
Sándor Jenei

Partially-ordered multi-type algebras, display calculi and the category of weakening relations ... 67
Peter Jipsen, Fei Liang, M. Andrew Moshier, and Apostolos Tzimoulis

A many-sorted polyadic modal logic ... 70
Ioana Leustean and Natalia Moangă

Epimorphisms in varieties of square-increasing residuated structures 74
Tommaso Moraschini, James Raftery, and Jamie Wannenburg

Epimorphisms, definability and cardinalities ... 77
Tommaso Moraschini, James Raftery, and Jamie Wannenburg

Residuated lattices and the Nelson identity ... 81
Umberto Rivieccio, Thiago N. Silva, and Matthew Spinks

Modal logics for reasoning about weighted graphs 84
Igor Sedlar and Amanda Vidal Wandelmer

Deciding active structural completeness ... 87
Michał Stronkowski

Non axiomatizability of the finitary Łukasiewicz modal logic 89
Amanda Vidal

Implicational tonoid logics and their relational semantics 93
Eunsuk Yang and J. Michael Dunn
On an implication-free reduct of MV_n chains

Marcelo E. Coniglio¹, Francesc Esteva², Tommaso Flaminio³, and Lluis Godo²

¹ Dept. of Philosophy - IFCH and CLE
University of Campinas, Campinas, Brazil
coniglio@cle.unicamp.br
² IIA - CSIC, Bellaterra, Barcelona, Spain
{esteve,tommaso,godo}@iiia.csic.es

Abstract

Let L_{n+1} be the MV-chain on the $n + 1$ elements set $L_{n+1} = \{0, 1/n, 2/n, \ldots, (n - 1)/n, 1\}$ in the algebraic language $\{\to, \neg\}$ [2]. As usual, further operations on L_{n+1} are definable by the following stipulations: $1 = x \to x$, $0 = \neg 1$, $x \oplus y = \neg x \to y$, $x \odot y = \neg (\neg x \oplus \neg y)$, $x \land y = x \odot (x \to y)$, $x \lor y = \neg (\neg x \land \neg y)$. Moreover, we will pay special attention to the also definable unary operator $*x = x \odot x$.

In fact, the aim of this paper is to study the $\{*, \neg, \lor\}$-reducts of the MV-chains L_{n+1}, that will be denoted as L_{n+1}^*, i.e. the algebra on L_{n+1} obtained by replacing the implication operator \to by the unary operation $*$ which represents the square operator $*x = x \odot x$ and which has been recently used in $[1]$ to provide, among other things, an alternative axiomatization for the four-valued matrix logic $J_4 = \{\mathcal{L}_4, \{1/3, 2/3, 1\}\}$. In this contribution we make a step further in studying the expressive power of the $*$ operation, in particular we will focus on the question for which natural numbers n the structures L_{n+1} and L_{n+1}^* are term-equivalent. In other words, for which n the Lukasiewicz implication \to is definable in L_{n+1}^*, or equivalently, for which n L_{n+1}^* is in fact an MV-algebra. We also show that, in any case, the matrix logics (L_{n+1}^*, F), where F is an order filter, are algebraizable. What we present here is a work in progress.

Term-equivalence between L_{n+1} and L_{n+1}^*

Let X be a subset of L_{n+1}. We denote by $(X)^*$ the subalgebra of L_{n+1}^* generated by X (in the reduced language $\{*, \neg, \lor\}$). For $n \geq 1$ define recursively $(*)^n x$ as follows: $(*)^0 x = x$ and $(*)^{i+1} x = (*)(*)^i x$, for $i \geq 1$.

A nice feature of the L_{n+1}^* algebras is that we can always define terms characterising the principal order filters $F_a = \{b \in L_{n+1} \mid a \leq b\}$, for every $a \in L_{n+1}$.

Proposition 1. For each $a \in L_{n+1}$, the unary operation Δ_a defined as

$$\Delta_a(x) = \begin{cases} 1 & \text{if } x \in F_a \\ 0 & \text{otherwise.} \end{cases}$$

is definable in L_{n+1}^*. As a consequence, for every $a \in L_{n+1}$, the operation χ_a that corresponds to the characteristic function of a (i.e. $\chi_a(x) = 1$ if $x = a$ and $\chi_a(x) = 0$ otherwise) is definable as well.

Proof. The case $a = 1$ corresponds to the Monteiro-Bazg Delta operator and, as is well-known, it can be defined as $\Delta_1(x) = (*)^0 x$. For $a = 0$ define $\Delta_a(x) = \Delta_1(x) \lor \Delta_1(x)$; then $\Delta_a(x) = 1$ for every x. Now, assume $0 < a = i/n < 1$. It is not difficult to show that one can always find a sequence of terms (operations) $t_1(x), \ldots, t_m(x)$ over $\{*, \neg\}$ such that $t_1(t_2(\ldots(t_m(x)\ldots))) = 1$.
Lemma 4. As for the operations χ_a, define $\chi_1 = \Delta_1$, $\chi_0 = -\Delta_1/n$, and if $0 < a < 1$, then define $\chi_a = \Delta_a \land -\Delta_{a-1/n}$.

It is now almost immediate to check that the following implication-like operation is definable in every L^*_{n+1}: $x \Rightarrow y = 1$ if $x \leq y$ and 0 otherwise. Indeed, \Rightarrow can be defined as

$$x \Rightarrow y = \bigvee_{0 \leq i \leq j \leq n} (\chi_{i/n}(x) \land \chi_{j/n}(y)).$$

Actually, one can also define Gödel implication on L^*_{n+1} by putting $x \Rightarrow y = (x \Rightarrow y) \lor y$.

On the other hand, it readily follows from Proposition 1 that all the L^*_{n+1} algebras are simple. Indeed, if $a > b \in L^*_{n+1}$ would be congruent, then $\Delta_n(a) = 1$ and $\Delta_n(b) = 0$ should be so. Recall that an algebra is called strictly simple if it is simple and does not contain proper subalgebras. It is clear then that the case of L^*_{n+1} and L^*_{n+1} algebras, they are strictly simple if $(0, 1)$ is their only proper subalgebra.

Remark 2. It is well-known that L^*_{n+1} is strictly simple iff n is prime. Note that, for every n, if $B = (B, \lor, \land, \neg)$ is an MV-subalgebra of L^*_{n+1}, then $B^* = (B, \lor, \land, \neg)$ is a subalgebra of L^*_{n+1} as well. Thus, if L^*_{n+1} is not strictly simple, then L^*_{n+1} is not strictly simple as well. Therefore, if n is not prime, L^*_{n+1} is not strictly simple. However, in contrast with the case of L^*_{n+1}, n being prime is not a sufficient condition for L^*_{n+1} being strictly simple. In Lemma 7 below we will provide some examples of prime n for which L^*_{n+1} is not strictly simple, in view of Theorem 6.

Lemma 3. L^*_{n+1} is strictly simple iff $\langle (n-1)/n \rangle^* = L^*_{n+1}$.

Proof. The 'only if' direction is trivial. In order to prove the converse, assume that $\langle a_1 \rangle^* = L^*_{n+1}$ for $a_1 = (n-1)/n$. For $i \geq 1$ let $a_{i+1} = t_i(a_1)$ such that $t_i(x) = *x$ if $x > 1/2$, and $t_i(x) = -*x$ otherwise. Since L^*_{n+1} is finite, there is $1 \leq i < j$ such that $a_i = a_j$ and so $A_1 := \{a_1 \mid i \geq 1\} = \{a_1 \mid 1 \leq i \leq k\}$ for some k such that $a_1 \neq a_j$ if $1 \leq i, j \leq k$. Let $A = A_1 \cup A_2 \cup \{0, 1\}$ where $A_2 = \{\neg a \mid a \in A_1\}$. Since $*1 = 1$ and $*x = 0$ if $x \leq 1/2$, A is the domain of a subalgebra A of L^*_{n+1} over $\langle *, \land, \lor \rangle$ such that $a_1 \in A$, hence $\langle a_1 \rangle^* \subseteq A$. But $A \subseteq \langle a_1 \rangle^*$, by construction. Therefore $A = \langle a_1 \rangle^* = L^*_{n+1}$.

Fact: Under the current hypothesis (namely, $\langle a_1 \rangle^* = L^*_{n+1}$): if n is even then $n = 2$ or $n = 4$. Indeed, suppose that $\langle a_1 \rangle^* = L^*_{n+1}$ and n is even. If $n = 2$ or $n = 4$ then clearly L^*_{n+1} is strictly simple. Now, assume $n > 4$. Observe that: (1) for any $a \in L^*_{n+1} \setminus \{0, 1\}$, $*a = i/n$ such that i is even; and (2) if $i < n$ is even then $(-i/n) = (n - i)/n$ such that $n - i$ is even. That being so, if $i/n \in (A_1 \cup A_2) \setminus \{a_1, -a_1\}$ (recall the process described above) then i is even. But then, for instance, $3/n \notin A = \langle a_1 \rangle^* = L^*_{n+1}$, a contradiction. This proves the Fact.

From the Fact, assume now that n is odd, and let $a = ((n + 1)/2)/n$ and $b = ((n - 1)/2)/n$. Since $-a = b$, $-b = a$ and $a, b \in A$ then, by construction of A, there is $1 \leq k$ such that either $a = a_k$ or $b = a_k$. If $a = a_k$ then $a_{k+1} = *a = 1/n$ and so $a_{k+2} = -a_{k+1} = -1/n = (n-1)/n = a_1$. Analogously it can be proven that, if $b = a_k$ then $a_{j+1} = a_j$ for some $j > i$. This shows that $A_1 = \{a_1, \ldots, a_k\}$ is such that $a_{k+1} = a_1$ (hence $a_k = 1/n$). Now, let $c \in L^*_{n+1} \setminus \{0, 1\}$ such that $c \neq a_1$. If $c \in A_1$ then the process of generation of A from c will produce the same set A_1 and so $A = L^*_{n+1}$, showing that $\langle c \rangle = L^*_{n+1}$. Otherwise, if $c \in A_2$ then $\neg c \in A_1$ and, by the same argument as above, it follows that $\langle c \rangle = L^*_{n+1}$. This shows that L^*_{n+1} is strictly simple.

Lemma 4. If L^*_{n+1} is term-equivalent to L^*_{n+1} then L^*_{n+1} is strictly simple.
Proof. If L_{n+1} is term-equivalent to L^*_{n+1} then \odot is definable in L^*_{n+1}, and hence $\langle (n-1)/n \rangle = L^*_{n+1}$. Indeed, we can obtain $(n-i-1)/n = ((n-1)/n) \odot ((n-i)/n)$ for $i = 1, \ldots, n-1$, and $1 = -0$. By Lemma 3 it follows that L^*_{n+1} is strictly simple.

Corollary 5. If L_{n+1} is term-equivalent to L^*_{n+1} then n is prime.

Proof. If L_{n+1} is term-equivalent to L^*_{n+1} then L^*_{n+1} is strictly simple, by Lemma 4. By Remark 2 it follows that n must be prime.

Theorem 6. L_{n+1} is term-equivalent to L^*_{n+1} iff L^*_{n+1} is strictly simple.

Proof. The ‘only if’ part is Lemma 4. For the ‘if’ part, since L^*_{n+1} is strictly simple then, for each $a, b \in L_{n+1}$ where $a \notin \{0, 1\}$ there is a definable term $t_{a,b}(x)$ such that $t_{a,b}(a) = b$. Otherwise, if for some $a \notin \{0, 1\}$ and $b \in L_{n+1}$ there is no such term then $A = \{a\}^*$ would be a proper subalgebra of L^*_{n+1} (since $b \notin A$) different from $\{0, 1\}$, a contradiction. By Proposition 1 the operations $\chi_a(x)$ are definable for each $a \in L_{n+1}$; then in L^*_{n+1} we can define Lukasiewicz implication \rightarrow as follows:

$$x \rightarrow y = (x \Rightarrow y) \lor \left(\bigvee_{n>j>0} \chi_{i/n}(x) \land \chi_{j/n}(y) \land t_{i/n,a,j}(x) \right) \lor \left(\bigvee_{n>j>0} \chi_{1}(x) \land \chi_{j/n}(y) \land y \right)$$

where $a_{ij} = 1 - i/n + j/n$.

We have seen that n being prime is a necessary condition for L_{n+1} and L^*_{n+1} being term-equivalent. But this is not a sufficient condition: in fact, there are prime numbers n for which L_{n+1} and L^*_{n+1} are not term-equivalent.

Lemma 7. If n is a prime Fermat number greater than 5 then L_{n+1} and L^*_{n+1} are not term-equivalent.

Proof. Recall that a Fermat number is of the form $2^{2^k} + 1$, with k being a natural number. We are going to prove that if n is a prime Fermat number and $a_1 = (n-1)/n$, then $\langle a_1 \rangle^*$ is a proper subalgebra of L^*_{n+1} (recall Theorem 6 and Lemma 3). Thus, let $n > 5$ be a prime Fermat number, that is, a prime number of the form $n = 2^m + 1$ with $m = 2^k$ and $k > 1$. The $(m-1)$-times iterations of \ast applied to a_1 produce $((n+1)/2)/n$, that is: $\langle (\ast)^{m-1}(a_1) = ((n+1)/2)/n$. Since $\ast(((n+1)/2)/n) = 1/n$, the constructive procedure for generating the algebra $\langle a_1 \rangle^*$ described in the proof of Lemma 3 shows that $\langle a_1 \rangle^* = A$ has $2m + 2$ elements: m elements in A_1, plus m elements in A_2 corresponding to their negations, plus 0 and 1. Since $2m+2 < 2^m+1 = n$ as $n > 5$, $\langle a_1 \rangle^*$ is properly contained in L_{n+1}, and it is different from $\{0, 1\}$.

The first Fermat prime number greater than 5 is $n = 17$. It is easy to see that $\langle 16/17 \rangle^* = \{0, 1/17, 2/17, 4/17, 8/17, 9/17, 13/17, 15/17, 16/17, 1\}$.

Actually, we do not have a full characterisation of those prime numbers n for which L_{n+1} and L^*_{n+1} are term-equivalent. But computational results show that for prime numbers until 8000, about 60% of the cases yield term-equivalence.
Algebraizability of \(\langle L_{n+1}^*, F_i/n \rangle \)

Given the algebra \(L_{n+1}^* \), it is possible to consider, for every \(1 \leq i \leq n \), the matrix logic \(L_{i,n+1}^* = \langle L_{i,n+1}^*, F_i/n \rangle \). In this section we will shown that all the \(L_{i,n+1}^* \) are algebraizables in the sense of Blom-Pigozzi [1], and the quasivarieties associated to \(L_{i,n+1}^* \) and \(L_{i,n+1,1}^* \) are the same, for every \(i,j \).

Observe that the operation \(x \approx y = 1 \) if \(x = y \) and \(x \approx y = 0 \) otherwise is definable in \(L_{n+1}^* \). Indeed, it can be defined as \(x \approx y = (x \Rightarrow y) \land (y \Rightarrow x) \). Also observe that \(x \approx y = \Delta_1((x \Rightarrow_G y) \land (y \Rightarrow_G x)) \) as well.

In order to prove the main result of this section, we state the following:

Lemma 8. For every \(n \), the logic \(L_{n+1}^*_n := L_{i,n+1}^* = \langle L_{n+1}^*, \{1\} \rangle \) is algebraizable.

Proof. It is immediate to see that the set of formulas \(\Delta(p,q) = \{p \approx q\} \) and the set of pairs of formulas \(E(p,q) = \{(p, \Delta_0(p))\} \) satisfy the requirements of algebraizability.

Blom and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two propositional deductive systems \(S_1 \) and \(S_2 \) in the same language are equivalent if there are translations \(\tau_i : S_i \rightarrow S_j \) for \(i \neq j \) such that: \(\Gamma \vdash_{S_i} \varphi \iff \tau_i(\Gamma) \vdash_{S_j} \tau_i(\varphi) \), and \(\varphi \vdash_{S_i} \tau_i(\varphi) \).

From very general results in [2] it follows that two equivalent logic systems are indistinguishable from the point of view of algebra, namely: if one of the systems is algebraizable then the other will be also algebraizable w.r.t. the same quasivariety. This will be applied to \(L_{i,n+1}^* \).

Lemma 9. The logics \(L_{i,n+1}^* \) and \(L_{i,n+1}^* \) are equivalent, for every \(n \) and for every \(1 \leq i \leq n-1 \).

Proof. It is enough to consider the translation mappings \(\tau_1 : L_{i,n+1}^* \rightarrow L_{i,n+1}^*, \tau_1(\varphi) = \Delta_1(\varphi) \), and \(\tau_2 : L_{i,n+1}^* \rightarrow L_{i,n+1}^*, \tau_2(\varphi) = \Delta_{i/n}(\varphi) \).

Finally, as a direct consequence of Lemma 8, Lemma 9 and the observations above, we can prove the following result.

Theorem 10. For every \(n \) and for every \(1 \leq i \leq n \), the logic \(L_{i,n+1}^* \) is algebraizable.

As an immediate consequence of Theorem 10, for each logic \(L_{i,n+1}^* \) there is a quasivariety \(Q(i,n) \) which is its equivalent algebraic semantics. Moreover, by Lemma 9 and by Blom and Pigozzi’s results, \(Q(i,n) \) and \(Q(j,n) \) coincide, for every \(i,j \). The question of axiomatising \(Q(i,n) \) is left for future work.

Acknowledgments The authors acknowledge partial support by the H2020 MSCA-RISE-2015 project SYMCS. Coniglio also acknowledges support by the CNPq grant 308524/2014-4. Flaminio acknowledges support by the Ramon y Cajal research program RYC-2016-19793. Esteva, Flaminio and Godo also acknowledge the FEDER/MINECO project TIN2015-71799-C2-1-P.

References

