Fuzzy Components for Negotiating Agents Architectures

Noyda Matos Carles Sierra
IIIA - Artificial Intelligence Research Institute CSIC, Campus UAB, 08193 Bellaterra, Catalonía, Spain.
noyda.sierra@iiia.csic.es

1 The Negotiation Model
In this paper we explore an existing model of negotiation [9, 6] based on a set of mutually influencing two-parties, many-issues negotiation. This negotiation model can operate in a wide range of environments and has a large number of parameters that need to be fixed for each step of the negotiation.

This paper sketches two types of agent architectures: Fuzzy and Case-Based. At each step of the negotiation process the agents fix a weighted combination of tactics to employ and the parameter values related to these tactics by different means: using a set of fuzzy rules or a base of cases. The aim of the research is to study the evolution of agent populations built with these two architectures: fuzzy and case-based applying Genetic Algorithms [2]. The ultimate goal is to determine which negotiation strategy is more successful.

Negotiation can range over a number of quantitative and qualitative issues, x_1, \ldots, x_n. Quantitative issues could describe aspects like price, longitude, and are defined over a real domain, $x_j \in D_j = [\min_j, \max_j]$. Qualitative issues describe aspects like color, brightness, and are defined over a totally ordered domain, $x_k \in D_k = (e_1, \ldots, e_m)$ where e_1, \ldots, e_m are linguistic labels.

Each agent has a scoring function $V^a_j : D_j \rightarrow [0, 1]$ that gives the score agent a assigns to the value x of issue j in the range of its acceptable values D_j. The scoring functions are either monotonically increasing or decreasing. When an agent receives an offer, it rates it using a function that combines the scores of the different issues in the following way:

$$V^a(x) = \sum_{1 \leq j \leq n} w_j^a V^a_j(x_j)$$

where w_j^a is the importance of issue j for agent a. We assume the weights are normalised. If the score of the received offer is greater than that of the counter offer the agent would send at this point, then the offer is accepted. If the pre-established deadline (t_{max}) has been exceeded the negotiation must have completed is reached, the offer is rejected. Otherwise, a counter offer is submitted.

We denote by $x^a_{a,b}$ the offer proposed by agent a to agent b at time t, and $x^a_{a,b}[j]$ be the value for issue j. A Negotiation Thread between agents $a, b \in Agents$, at time t, noted $X^t_{a,b}$ is any finite sequence of offers and counter-offers between both agents.

Lineal combinations of functions called tactics generate offers and counter-offers. In this case, the tactics are assigned a weight to indicate their relative importance. As the negotiation proceeds, new criteria may become relevant and the relative importance of existing criteria may vary. To reflect this fact, an agent has a strategy which varies the weights of the different tactics over time in response to various environmental and negotiation cues (section 1.2).

1.1 Tactic Families
A tactic generates a value for a single negotiation issue based upon a single criterion: time remaining and/or the behaviour of the opponent. If multiple criteria are important in determining the value of a negotiation issue, then multiple tactics can be combined.

Tactics may use the value of an issue in a proposal to calculate a new value for that issue in a counter proposal. If the issue is qualitative its values are linguistic labels. To simplify the definition of tactics we uniformly label the labels using the centroid method and have tactics over a real domains.

1.1.1 Time-dependent tactics
These tactics consider the remaining negotiation time. $x^t_{a,b}\{j\} = \{\min_j + \alpha^a(t)(\max_j - \min_j)\}$ if V^a_j is dec

$\alpha^a(t)$ is a polynomial function parameterised by a value $\beta \in \mathbb{R}^+$ that determines the convexity of the curve:

$$\alpha^a(t) = \left(\frac{t}{t_{max}}\right)\beta$$

We have classified them into two sets which show clearly different behaviours: Boulware (don't start conceding until the deadline is nearly up) with $\beta < 1$, and Conceder (start giving ground fairly quickly) with $\beta > 1$.

1.1.2 Imitative tactics
These tactics generate the new offer depending on the opponent's behaviour:

$$x^t_{a,b}[j] = \begin{cases} \min_j & \text{if } P \leq \min_j \\ \max_j & \text{if } P > \max_j \\ P & \text{otherwise} \end{cases}$$

The tactics differ depending on which aspect of the opponent's behaviour they imitate and to what degree, determine by P.

- Relative Tit-For-Tat (Relative-TFT)
 The agent reproduces, in percentage terms, the behaviour that its opponent has performed.
\[P = \frac{x_{a-b}[j]}{x_{a-b}[j] + x_{a+b}[j]} \]

- **Absolute Tit-For-Tat (Absolute-TFT)**
 The opponent behaviour is imitated in absolute terms. \(P = x_{a-b}[j] + x_{a+b}[j] \)
- **Averaged Tit-For-Tat (Average-TFT)**
 The agent uses the average of the percentage change of its opponents to determine its offer.
 \[P = \frac{x_{a-b}[j]}{x_{a-b}[j] + x_{a+b}[j]} \]

1.2 Strategies

The negotiation strategy determines the best course of action to reach an agreement. The main point is, in every step of the negotiation process, to determine: which weighted combination of tactics to employ and the value of the parameters associated with these tactics. A *weighted counter proposal* is a linear combination of the tactics given by a matrix of weights \(\Gamma \). Given a set of tactics, different types of negotiation behaviour can be obtained by weighting the tactics in a different way. That is, by changing the matrix \(\Gamma \) — particular to each negotiation thread.

The agents have a representation of its mental state \((MS^n_t) \) at time \(t \), which contains information about its beliefs, its knowledge of the environment (time, resources, etc.), and any other attitudes (desires, goals, obligations, intentions, etc.). A *Negotiation Strategy* for agent \(a \) is any function \(f \) such that, given \(a \)'s mental state at time \(t, MS^n_a \), and a matrix of weights at time \(t, \Gamma_{a-b} \), generates a new matrix of weights for time \(t+1, \Gamma_{a-b+1} = f(\Gamma_{a-b}, MS^n_a) \)

In this paper we propose as negotiation strategy a Set of Fuzzy Rules and a Case Base Reasoner to determine at each step of the negotiation the \(\Gamma \) matrix and the parameters related to the used tactics.

2 Fuzzy Rules Agents

Systems based on fuzzy rules [4, 3] have proved to be an important tool to model complex systems. We had defined a type of agents that use a family of fuzzy rules to model the negotiation strategy. These rules analyse the environment to adjust the parameters and the weighted combination of tactics. The rules follow the following pattern:

Rule: IF \(x_1 \) is \(A_{1i} \) and \(\ldots \) and \(x_n \) is \(A_{ni} \) THEN \(y \) is \(B_i \)

where \(x_1, \ldots, x_n \) and \(y \) are the mental state variables and \(A_{1i}, \ldots, A_{ni}, B_i \) are linguistic labels of the variables \(x_1, \ldots, x_n, y \) in the universe of discourse \(U_1, \ldots, U_n, V \) of the variables. These linguistic labels are characterised by their membership functions \(A_{ij} : U_j \rightarrow [0, 1], j = 1, \ldots, n; B_i : V \rightarrow [0, 1] \) and have a trapezoidal shape.

For example: In the domain of the Real Estate Agency we could have the following rules:

- **IF agency is going_bankrupt and \(\gamma_{price,concede} \) is medium THEN \(\Delta_y \text{price, boulware} \text{ is positive, high} \)**
 If the Real Estate Agency is going bankrupt and we are not very tough in negotiating price, we change it by making the agent behave in a more boulware way, because it has, in such conditions, a higher opportunity of getting a lower price for a property.
- **IF time.on.sell is long and \(\gamma_{house} \) is high THEN \(\Delta_y \text{house} \text{ is positive, high} \)**
 If the Real Estate Agency has a property that wasn't sold for a long period we can obtain more profit by not conceding in the same way as the agency, because if the house has not been sold for a long time, means probably that its price is far beyond the reasonable one. In other words we should not imitate the conceding steps of the agency in the same amount, hence we increase our boulware behaviour for all issues.
- **IF \(w_{bright} \) is high and house is bright and \(\gamma_{price, boulware} \text{ is medium} \) THEN \(\beta_{boulware} = 1 \)**
 The agent behaves less boulware if it gives a lot of importance to brightness and it is a feature of the house being offered.

The following steps do the handling of this set of rules:

Fuzzification: The membership functions of the input variables about the current negotiation thread and the weighted tactics are applied to their actual values to determine the truth degree of each condition.

Rule Evaluation: In this process the truth value of the premise of each rule is propagated to the conclusions. The result of this process is the assignment of a fuzzy subset to some output variables.

Defuzzification: Our goal is to determine a new matrix \(\Gamma \) and values for the parameters associated to each tactic, for this reason we need to obtain an exact value for these variables. As we mentioned in section 1.1 we employ the centroid method to obtain the crisp values.

Normalisation: Finally, a normalisation of the values of gamma, \(\Gamma \), obtained by defuzzification is done.

3 Case-Based Negotiating Agents

Case-based reasoning solves a new problem by adapting a previous similar situation [1, 5]. Using CBR terminology, a case in negotiation can be thought of as a negotiation process that has been stored and can be reused in solving new negotiation processes. The main task that a case-based negotiating agent has to deal with are the representation of the negotiation cases in its case base, the retrieval of a past case similar to the new one and the adaptation of its solution to the current negotiation process. Then the new offer is calculated using the weighted combination and the parameters gave by this case.

The Case Base, \(CB \), is composed of a set of cases that represents those negotiation where the agent was involved. But also, \(CB \) is extended by negotiations performed by other agents. Cases in \(CB \) have a valuation that show how much this case has contributed to the solution of other cases.

Each case store information about the agents like: the set
of issues and their relative importance, the \(t_{\text{max}} \), the negotiation thread, the \(P \) matrix and tactics parameters at each step of the negotiation and the scoring obtained.

3.1 Case Retrieval

The case retrieval process is executed concurrently with the other activities of a case-based agent. The objective is to find the case in \(\text{CB} \) most similar to the current negotiation. We denote by \(N \) the current negotiation. When an agent sends an offer, it immediately begins to retrieve those cases that are more similar to the current negotiation from its \(\text{CB} \). When it receives a counter-offer to its offer it is incorporated into the negotiation thread and used to finally select the most similar case from those that were obtained in the meantime.

3.1.1 Filtering

Not all cases stored in \(\text{CB} \) can be compared with \(N \) for different reasons. This is why we build a subset \(F \) selecting from \(\text{CB} \) those cases that satisfy all the following criteria:

1. **Class of \(t_{\text{deal}} \):** We divide \(\text{CB} \) into two classes that depend on the value of \(t_{\text{deal}} \) (the time that negotiation takes) with respect to a cut value \(\theta \): Short \(t_{\text{deal}}, \) with \(C[\text{deal}] \leq \theta \) and Large \(t_{\text{deal}}, \) with \(C[\text{deal}] > \theta \). The rationale here is that the negotiation strategies are radically different depending on how much time is available.

2. **Duration of negotiation:** With \(t \) being the time consumed so far in the current negotiation, we select the cases with a duration longer than the value of \(t \), but not longer than the \(t_{\text{max}} \) defined in \(N \). That is: \(t < C[\text{deal}] \leq N[\text{deal}] \).

3. **Sets of Issues:** We select the cases from \(\text{CB} \) that contain at least the set of issues of \(N \) for each step of the negotiation, to make the comparison between them possible. That is: \(\forall k \leq t \text{ } S(N[\text{Issues}, k]) \subseteq S(C[\text{Issues}, k]) \) where \(S \) is a function that transforms a vector into a set.

4. **Who began the negotiation and with which role?** Only the cases in which the agent that began the negotiation is the same as in \(N \) and had the same role are considered.

3.1.2 Final Selection

The cases that satisfied all the aforementioned criteria compose the set \(F \) from where we will select the most similar case with respect to the current negotiation. The similarity at time \(t \) between the case \(N \) and all the cases \(C \in F \) is measured in the following way:

\[
\text{Sim}(N, C, t) = r_1 \sum_{k=1}^{t} \frac{2k}{t(t-1)} \times \text{Sim}_\text{Stop}(N, C, k) + r_2 \times C[\text{Valuation}] + r_3 \times C[\text{Utility}]
\]

In this similarity measure we take into account three factors:

- The similarity between the offers of both cases for all previous instance \(k \) of the negotiation. With the factor \(\frac{2k}{t(t-1)} \) we concede an increasing importance to the new marked past.
- The similarity of the offers in the last steps of the negotiation.

\[
\text{The Valuation of the case, } C[\text{Valuation}] \in [0, 1], \quad C[\text{Valuation}] = C[\text{Valuation}] + \delta \times (1 - C[\text{Valuation}])
\]

- The utility, \(C[\text{Utility}] \in [0, 1] \), obtained by this case during the negotiation. We define the utility as follow:

\[
\text{Utility} = \text{tanh} \left(\frac{\sum_{k=1}^{t} x_d^{(k)} \delta}{\sum_{k=1}^{t} x_d^{(k)}} \right)
\]

where \(x_d^{(k)} \) is the final deal, and \(x_d^{(Nash)} \) represents the deal that would be made at the Nash equilibrium point.

The factors \(r_i \in [0, 1] \) determine the relative relevance of the three elements mentioned in the similarity measure and satisfy: \(r_1 + r_2 + r_3 = 1 \). The similarity of cases will change by varying the value associated with each \(r_i \).

The similarity degree between two offers is defined as:

\[
\text{Sim}_\text{Stop}(N, C, k) = \sum_{j=1}^{n} \text{Sim}_\text{Weight}(N, C, k, j) + \sum_{j=1}^{n} \text{Sim}_\text{Weight}(N, C, k, j) \\

\text{with } \text{Sim}_\text{Weight}(N, C, k, j) = \frac{[\text{Weights}, k, j]}{\text{card}(N[\text{Issues}, k])}
\]

In this function we take into account:

- The similarity between the vector Thread for both cases. We consider a quotient between the scoring value for issue \(j \) in the step \(k \) and the scoring for the same issue in the step \(k + 1 \). This quotient is computed for both cases, \(N \) and \(C \), and then the quotient of both is the argument of the function \(\text{AE} = \text{Almost}_\text{Equal} \) that shows how close to 1 was the result.

- The similarity between the vectors of weights of the case \(N \) and \(C \). We give more importance to the similarity between those issues that agent a considers more relevant in the current step of negotiation. The similarity between the vectors of weight is calculated in the following way:

\[
\text{Sim}_\text{Weight}(N, C, k, j) = \frac{[\text{Weights}, k, j]}{\text{card}(N[\text{Issues}, k])}
\]

\[
\text{Sim}(N, C, k) = \sum_{j=1}^{n} \text{Sim}_\text{Weight}(N, C, k, j)
\]

3.2 Adaptation

The case with the highest similarity contains the vector of \(\text{Parameters}_{n+1} \) and the \(\Gamma_{n+1} \) matrix; these elements are to be used in the next step of the negotiation process. However, this solution can be improved by adapting the values of the \(\text{Parameters}_{n+1} \) and the \(\Gamma_{n+1} \) to the current mental state (\(\text{MS}_n^{(n+1)} \)). This adaptation process is modelled by a set of Adaptation Fuzzy Rules. These rules represent conditions of the environment in which the agent acts and determine variations in the value of the parameters of the tactics and the \(\mu_j \)'s. In general these rules follow the following pattern:

Rule: IF \(x_1 \) is \(A_{i1} \) and ... and \(x_n \) is \(A_{in} \), THEN \(y \) is \(B_k \)

where \(x_1, \ldots, x_n \) and \(y \) are the mental state variables and \(A_{i1}, \ldots, A_{in}, B_k \) are linguistic labels of the variables \(x_1, \ldots, x_n, y \) in the universe of discourse \(U_1, \ldots, U_n, V \) of the variables. These linguistic labels are characterised by
their membership functions \(A_i : U_j \rightarrow [0, 1], j = 1, \ldots, n; \)
\(B_i : V \rightarrow [0, 1] \) and have a trapezoidal shape.

In general the rule conditions express a state of the
environment and the negotiation tactics. The rule consequents
change the weighted combinations and the tactic parameters.
A variation in \(\tau_{ij} \) generates automatically a normaliza-
tion of the rest of gammas.

Example: In the domain of the Real Estate Agency, we
could have the following fuzzy rules:

\[
\begin{align*}
\text{IF highway is near and } \text{price,houseware is medium THEN } \\
\Delta \text{price,houseware is negative,small}
\end{align*}
\]

\[
\begin{align*}
\text{IF park is near and } \text{price,conceder is high THEN } \\
\Delta \text{price,conceder is positive,high}
\end{align*}
\]

The linguistic labels \textit{positive, high} represents a big positive
number and \textit{negative, small} a small negative number. If the
first rule applies, the agent will behave in a more houseware
fashion in all issues by decreasing its \(\beta_{\text{houseware}} \) value.
On the contrary (second rule) if a park is near the house and
the agent's attitude to the price is mainly houseware, it will
become more conceder, i.e. the \(\gamma_{\text{price,conceder}} \) related to the
conceder tactic increases the value and via the normalisation
process \(\gamma_{\text{price,houseware}} \) will decrease.

4 Evolving the Negotiation Strategies

GAs generate a sequence of ever improving ("fitter") pop-
ulations as the outcome of a search method modelled by a
\textit{selection mechanism}, \textit{crossover} (recombining existing ge-
netic material in new ways) and \textit{mutation} (introducing new
genetic material into the population by random modific-
ations) [7]. In our case we employ the GA to make an evolu-
tionary approach of the Fuzzy Rules, of fuzzy agents, and the
\textit{Case Base} and the \textit{Adaptation Fuzzy Rules} associated with
Case-Based agents.

We form a population, where each agent becomes an individual, and model as genetic material
the different sets of rules and for the case base. The overall
aim of the search in all cases is to find a set of rules and a
base of cases that are optimally adapted for particular
negotiation situations.

The genetic materials of the individuals model the negoti-
ating agents. For both type of agents, fuzzy and CBR exist
common information that is kept as a genetic material, for
instance: the set of issues, \(\Gamma \) matrix and tactics parameters.
However those individuals that represents a fuzzy agents,
also must keep a representation of the set of rules and in
the CBR case a representation of it Case Memory and the
adaptation fuzzy rules.

We form different populations for Fuzzy and CBR agents
and we make evolve both populations to determine the best
strategy in both cases. The fitness function indicates how
well the agent performs in comparison to others in the same
population. To calculate the fitness function we perform a
Tournament in which the agents may negotiate. The fitness
function compares the utility associated with the deal and the
utility associated with the Nash equilibrium point (the point
in which the sellers' and the buyers' scoring functions are
equal). The more positive the difference, the more successful
the agent's behaviour.

\[
f_a(X^{e^c}) = \begin{cases}
V^a(x^{e^c}) - V^a(x_{\text{Nash}}^{e^c}) & \text{if last}(X^{e^c}) = \text{accept} \\
-V^a(x_{\text{Nash}}^{e^c}) & \text{otherwise}
\end{cases}
\]

where \(x^{e^c}_{\text{Nash}} \) is the final deal, and \(x^{e^c}_{\text{Nash}} \) represents the deal
that would be made at the Nash equilibrium point.

5 Conclusions

In this paper we presented the main technical ideas of our
current work on automated negotiation. We presented two
agent architectures for negotiation, \textit{Case-Based} and \textit{Fuzzy}.
Three basic techniques: \textit{Case-Based Reasoning}, \textit{Fuzzy Sets}
and \textit{Genetic Algorithms} are used as the basis to make an evolu-
tionary analysis of negotiation strategies. Over both archi-
tectures we propose an evolutionary study applying GA,
to determine the best strategy for the negotiation model
mentioned in this paper.

Many aspects of these architectures need to be studied
and adjusted during the experimental process that is currently
ongoing. We think that this combination technique is a
step forwards the design of flexible and accountable trad-
ing agents.

Referencias

[1] A. Amoudt and E. Plaun. Case-based reasoning: Founda-
tional issues, methodological variations, and system
approaches. \textit{AI Communications. IOS Press.}, 7(1):39-

algorithms for automated tuning of fuzzy controllers:

[4] D. Dubois and H. Prade. What are fuzzy rules and
how to use them. \textit{Fuzzy set and systems}, pages 109-
185, 1996.

and R. Lope de Mantaras. Fuzzy set modelling in case-
based reasoning. \textit{International Journal of Intelligent

decision functions for autonomous agents. \textit{Int. J. of

tion and Matching Learning. Addison-Wesley Publishing

[8] T. R. Gruber. Toward principles for the design of on-
tologies used for knowledge sharing. \textit{Formal Ontology in
Conceptual Analysis and Knowledge Representation.},
1993.

[9] C. Sierra, P. Faratin, and N. R. Jennings. A service-
oriented negotiation model between autonomous

for Enterprise Systems}. Morgan Kaufmann Publishers,
ic., 1997.

eling and Control}. Wiley-Inter-science, New York,